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1. 

In some applications of expansion chambers where the frequency range of interest is low,
the planar wave analysis becomes useful for an estimate of the acoustic performance. For
long symmetric expansion chambers, Davis et al. [1] introduced a one-dimensional (1-D)
analytical approach by assuming linear plane wave propagation in the axial direction. For
the circular expansion chambers with 180° offset inlet/outlet, recent investigations [2, 3]
illustrated, below the cut-off frequency of the first diametral (1, 0) mode, a nearly
one-dimensional wave propagation along the diametral direction for configurations with
a length to diameter ratio l/dQ 0·853, and axial wave propagation for l/dq 0·853. This
particular ratio, l/d=0·853, is used hereafter in this paper to distinguish the ‘‘short’’ and
‘‘long’’ chambers with 180° offset inlet/outlet.

The objective of the present study is to provide a diametral plane wave analysis for short
chambers in the absence of mean flow (see, for example, reference [4] for this effect). By
assuming a 1-D wave propagation in the diametral direction and using the segmentation
approach (see reference [5] for the convergence of this approach), the present study
develops the four-pole parameters of the chambers with end offset inlet/outlet and side
extended inlet/outlet, which are then used to determine the transmission loss. The boundary
element method (BEM) is also employed to assess the accuracy of the 1-D diametral
predictions.

2. 

Consider the expansion chambers of Figure 1 with (a) end offset inlet/outlet and (b) side
extended inlet/outlet. These chambers are divided into three sections designated by a, b
and c. Note that a simple side inlet/outlet chamber is the limit of configuration (b) with
no extensions. By assuming plane wave propagation in the diametral direction and using

Figure 1. (a) End offset inlet/outlet chamber and (b) side extended inlet/outlet chamber.
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the continuity conditions of the acoustic pressure and volume velocity at interfaces lead
to

$ P1

rcU1%=$ 1
Sa2/(S1Za )

0
Sb1/S1%$ Pb1

rcUb1%, $ Pb2

rcUb2%=$ 1
Sc1/(Sb2Zc )

0
S2/Sb2%$ P2

rcU2%,
(1, 2)

where P, U, r, c and S are the acoustic pressure, particle velocity, medium density, speed
of sound, and the cross-sectional area, respectively; the subscripts 1 and 2, b1 and b2, and
a2 and c1 denote the inlet and outlet of the chamber, the two ends of the central cavity
b, and the boundaries of the two end cavities a and c neighboring cavity b, respectively;

Za =−Pa2/(rcUa2), Zc =Pc1/(rcUc1), (3, 4)

are the characteristic impedances of the two end cavities a and c. In terms of the transfer
matrix approach, the following expressions may be written for the two end cavities:

$ Pa1

rcUa1%=$T a
11

T a
21

T a
12

T a
22%$ Pa2

rcUa2%, $ Pc1

rcUc1%=$T c
11

T c
21

T c
12

T c
22%$ Pc2

rcUc2%. (5, 6)

By using the rigid wall boundary condition, set Ua1 =0 in equation (5) and Uc2 =0 in
equation (6) to get respectively

Za =T a
22/T a

21, Zc =T c
11/T c

21. (7, 8)

The acoustic pressures and particle velocities at two ends of the central cavity b are related
by

$ Pb1

rcUb1%=$T b
11

T b
21

T b
12

T b
22%$ Pb2

rcUb2%, (9)

where T b
ij ’s are the four-pole parameters of the central cavity. Combining equations (1),

(2) and (9) yields

$ P1

rcU1%=$ 1
Sa2/(S1Za )

0
Sb1/S1%$T b

11

T b
21

T b
12

T b
22%$ 1

Sc1/(Sb2Zc )
0

S2/Sb2%$ P2

rcU2%
=$T11

T21

T12

T22%$ P2

rcU2%, (10)

which defines the four-pole parameters of the entire chamber, Tij , in terms of Za and Zc

of equations (7) and (8) for the two end cavities, and T b
ij of the central cavity. The

transmission loss of an anechoically terminated chamber is given by

TL=20 log10 {1
2=T11 +T12 +T21 +T22=}+10 log10(S1/S2). (11)

The calculation of Tij and therefore the transmission loss of equation (11) involve Ta
ij ,

T c
ij , and T b

ij of equations (5), (6) and (9). To determine these three matrices, the two end
cavities and the central cavity are modelled as a series of conical duct segments with a
rectangular cross-section of depth l. The four-pole parameters for such segment are
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Figure 2. A conical duct with a rectangular cross-section of constant depth.

developed next. The sound propagation in a duct with varying cross-sectional area is given
[6] by

d2P/dz2 + (1/S(z))(dS(z)/dz) dP/dz+ k2P=0, (12)

where S(z) is the cross-sectional area at z. For the conical duct of Figure 2 with a
rectangular cross-section, the cross-sectional area at z is

S(z)=2yl=2(y1/z1)zl, (13)

which reduces equation (12) to

d2P/dz2 + (1/z) dP/dz+ k2P=0. (14)

The solution of equation (14) may be expressed as

P(z)=AJ0(kz)+BY0(kz) (15)

which also yields, through the momentum equation, the particle velocity as

U(z)=−j/(rc)[AJ1(kz)+BY1(kz)], (16)

where Jm and Ym are the mth order Bessel functions of the first and the second kind,
respectively. The four-pole parameters of an arbitrary conical segment ‘i’ are then obtained
as

T(i)
11 =P(i)

1 /P(i)
2 =U (i)

2 =0 = (p/2)kz2[J1(kz2)Y0(kz1)− J0(kz1)Y1(kz2)], (17a)

T(i)
12 =P(i)

1 /(rcU(i)
2 )=P (i)

2 =0 = j(p/2)kz2[J0(kz1)Y0(kz2)− J0(kz2)Y0(kz1)], (17b)

T(i)
21 = rcU(i)

1 /P(i)
2 =U (i)

2 =0 =−j(p/2)kz2[J1(kz2)Y1(kz1)− J1(kz1)Y1(kz2)], (17c)

T(i)
22 =U(i)

1 /U(i)
2 =P (i)

2 =0 = (p/2)kz2[J1(kz1)Y0(kz2)− J0(kz2)Y1(kz1)]. (17d)

The transfer matrix of a structure consisting of, for example, n conical segments are
determined by [T]=rn

i=1 [T(i)], which are subsequently used in equations (5), (6) and (9).

3.   

Consider an example for the expansion chamber with the end offset inlet/outlet: the
configuration 1 of reference [3] (l=0·0314 m, d=0·1532 m, d1 = d2 =0·0486 m,
d1 = d2 =0·0510 m) with a cut-off frequency of first diametral mode f10 =1324 Hz. The
transmission loss calculations for this chamber used a total of 32 conical segments. When
the number of segments are doubled to 64, the results remain nearly the same throughout
the frequency range of interest in the present study (at the highest frequency of
f=1600 Hz, the deviation in the transmission loss is 0·65%), suggesting that 32 conical
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Figure 3. Transmission loss of a short chamber with end offset inlet/outlet (d=0·1532 m, l=0·0314 m,
d1 = d2 =0·0486 m, d1 = d2 =0·0510 m): ——, 1-D diametral; ······, 1-D axial; - - - -, BEM.

segments are adequate for accuracy within 1%. Figure 3 compares the transmission loss
results from 1-D diametral model, 1-D axial model and the BEM. A reasonable agreement
is observed between the 1-D diametral and the BEM predictions at low frequencies, while
no similarity exists between this pair and the 1-D axial predictions. Moving the inlet and
oulet towards the axis of the expansion chamber increases the difference between the 1-D
diametral and the BEM solutions with increasing frequencies, as progressively shown in
Figures 3–5 (Figure 3: d1 = d2 =0·0510 m; Figure 4: d1 = d2 =0·0340 m; Figure 5:
d1 = d2 =0·0170 m). For the limiting case of concentric configuration with the inlet and
outlet on the same axis of the expansion chamber, the radial wave propagation dominates
in the chamber. Based on the 1-D radial wave propagation in the chamber and using the
continuity conditions of the acoustic pressure and volume velocity, the transmission loss
of a chamber can be obtained, for a1 = a2, as

TL=20 log10=1+ l/(a1Zch )=, (18)

Figure 4. Transmission loss of a short chamber with end offset inlet/outlet (d=0·1532 m, l=0·0314 m,
d1 = d2 =0·0486 m, d1 = d2 =0·0340 m): ——, 1-D diametral; ······, 1-D axial; - - - -, BEM.
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Figure 5. Transmission loss of a short chamber with end offset inlet/outlet (d=0·1532 m, l=0·0314 m,
d1 = d2 =0·0486 m, d1 = d2 =0·0170 m): ——, 1-D diametral; ······, 1-D axial; - - - -, BEM.

where Zch is the characteristic impedance of the chamber given [7] by

Zch =j{H(1)
0 (ka1)− [H(1)

1 (ka)/H(2)
1 (ka)]H(2)

0 (ka1)}/{H(1)
1 (ka1)− [H(1)

1 (ka)/H(2)
1 (ka)]H(2)

1 (ka1)},

(19)

H(1)
m and H(2)

m being the mth order Hankel function of the first and the second kind, and
a, a1, and a2 the radii of chamber, inlet and outlet, respectively. Figure 6 for l/d=0·2050
and Figure 7 for l/d=0·1025 compare the transmission loss of the concentric expansion
chambers based on the 1-D radial, diametral, and axial models and the BEM. Both the
1-D radial and diametral solutions show reasonable agreement with the BEM predictions
at low frequencies while deviating at higher frequencies. The 1-D axial predictions for these
configurations lack resemblance to the other approaches, and should not be used even for
estimates. The shorter chamber of Figure 7 shows that the 1-D radial prediction is closer
to BEM results than the 1-D diametral model. Thus caution should be exercised in
applying the 1-D diametral model to concentric configurations. The difference observed

Figure 6. Transmission loss of a short concentric chamber (d=0·1532 m, l=0·0314 m, d1 = d2 =0·0486 m,
d1 = d2 =0): ——, 1-D radial; – · – · – , 1-D diametral; ······, 1-D axial; - - - -, BEM.
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Figure 7. Transmission loss of a short concentric chamber (d=0·1532 m, l=0·0157 m, d1 = d2 =0·0486 m,
d1 = d2 =0): ——, 1-D radial; – · – · – , 1-D diametral; ······, 1-D axial; - - - -, BEM.

in the resonance frequency between the 1-D radial and the BEM predictions is due to the
fact that the higher order mode effects are excluded in the former. The resonance frequency
based on the BEM solution moves towards lower frequencies with decreasing chamber
length, while the 1-D radial ( fresonance =1305 Hz) and diametral ( fresonance =1359 Hz)
solutions are independent of the chamber length. Similar shift to lower frequencies with
decreasing l/d is also observed experimentally, as depicted in Figure 20 of reference [8].
When the two aligned inlet and outlet ducts of concentric configuration are simultaneously
offset towards the perimeter of the chamber as illustrated in Figure 8(a), the 1-D diametral
approach again yields reasonable predictions, as shown in Figure 8(b).

Figures 9 and 10 compare the transmission loss results of the chambers with end offset
inlet/outlet, side extended inlet/outlet, and simple side inlet/outlet, from the 1-D diametral
model and the BEM, respectively. The 1-D diametral results agree well with the BEM
predictions at low frequencies, while deviating some at higher frequencies. For the entire
frequency range the relative trends for the three configurations are consistent between the

Figure 8. Transmission loss of a short chamber with end aligned inlet/outlet. (a) Layout, (b) transmission loss
(d=0·1532 m, l=0·0314 m, d1 = d2 =0·0486 m, d1 = d2 =0·0510 m); ——, 1-D diametral; ······, 1-D axial;
- - - -, BEM.
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Figure 9. Transmission loss of short chambers from 1-D diametral model (d=0·1532 m, l=0·0486 m,
d1 = d2 =0·0486 m): ——, end offset inlet/outlet (d1=d2 =0·0510 m); ······, side extended inlet/outlet
(d1 = d2 =0·0510 m); - - - -. side inlet/outlet (no extensions).

Figure 10. Transmission loss of short chambers from BEM (d=0·1532 m, l=0·0486 m, d1 = d2 =0·0486 m):
——, end offset inlet/outlet (d1=d2 =0·0510 m); ······, side extended inlet/outlet (d1 = d2 =0·0510 m); - - - -, side
inlet/outlet (no extensions).

1-D model and the BEM. The side extended inlet/outlet behaves similar to the end offset
inlet/outlet, except the former exhibits a wider dome due to the smaller effective length
for the sound propagation in the chamber. The simple side inlet/outlet configuration
reveals a smaller acoustic attenuation due to the absence of resonant end cavities.

Finally, to investigate the effect of the expansion volume, the 1-D results of
transmission loss for the circular and rectangular chambers with simple side inlet/outlet

Figure 11. Transmission loss of short chambers with side inlet/outlet (no extensions) (d=0·1532 m,
l=0·0486 m): ——, circular chamber (d1=d2 =0·0486 m); ······, rectangular chamber (d1 = d2 =0·0486 m);
- - - -, circular chamber (d1 = d2 =0·0324 m); – · – · – , rectangular chamber (d1 = d2 =0·0324 m).
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(no extensions) are compared in Figure 11. The rectangular configuration has the same
inlet and outlet diameters and depth as the circular chamber, while the height is equal to
the diameter of the circular chamber. As expected, the somewhat larger expansion volume
results in a larger attenuation. The circular chamber exhibits a wider dome than the
corresponding rectangular chamber due to the smaller effective length for the sound
propagation in the chamber. The effect of expansion ratio is illustrated by retaining the
same chambers, and reducing the inlet and outlet diameters. The transmission loss
increases, as expected, while the relative trends for two configurations remain the same.
With increasing frequency, multidimensional waves begin to dominate for all short
chambers, terminating the applicability of the 1-D diametral model. Thus in applying this
simplistic approach, the upper limit of frequency for a given configuration needs to be
examined.
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